

1.Study of WML and J2ME simulators

Aim:

To study about WML and J2ME simulator.

Java 2 Platormm Micro Editon (J2ME)

Introducton:

Traditonal computng devices use fairly standard hardware confguratons such as displaym

keyboardmlarge amount of memory and permanent storage. However new breed of

computng devices lacs hardware confguraton. J2ME is specially designed for developing

applicatons for small computng devices such as cell phonesm PnA etc.

J2ME Confguratons:

Confguraton defnes the JM M for a partcular small computng device.

Types:

Two types of confguraton haves been defned.

1) CLnC (Connected limited nevice confguraton)

CLnC is used for the devices with the limited resources. CLnC devices use stripped

version of JM M called KM M. CLnC devices are mobile phonesmPnA etc.

2) CnC (Connected device confguraton)

CnC devices use complete JM M. CnC devices are set-top boxm Home appliances such as Air

conditoner etc..

J2ME Profles:

Profle consists of classes that enable developers to implements features found n a related

group of small computng devices.

Many profle are available . Here we use MInP (Mobile Informaton nevice Profle) MInP is

used with CLnC confguraton that provides classes for local storagem a user interface and networking

capabilites. Other profles are Game proflem Foundaton proflem RMI profle and many more..

Java M irtual Machine layer:

This layer is an implementaton of a Java M irtual Machine that is customized for a partcular

device's host operatng system and supports a partcular J2ME confguraton.

Confguraton layer:

The confguraton layer defnes the minimum set of Java M irtual Machine features and

Java class libraries available on a partcular category of devices. In a waym a confguraton defnes the

commonality of the Java platorm features and libraries that developers can assume to be available on

all devices belonging to a partcular category. This layer is less visible to usersm but is very important to

profle implementers.

Profle layer:

The profle layer defnes the minimum set of applicaton programming interfaces (APIs)

available on a partcular family of devices.

Profles are implemented upon a partcular confguraton. Applicatons are written for a

partcular profle and are thus portable to any device that supports that profle. A device can support

multple profles. This is the layer that is most visible to users and applicaton providers.

MInP layer:

The Mobile Informaton nevice Profle (MInP) is a set of Java APIs that addresses issues such as

user interfacem persistence storagem and networking.

MInlet Programming:

A MInlet is class m which is controlled by the applicaton manager. A MInlet class must contain

three abstract methods that are called by applicaton manager.

public class class-name extends MInlet

{

public void

startApp(){ }

public void

pauseApp() { }

public void destroyApp(unconditonal boolean) { }

}

Steps for creatng a MInlet suite:

1) Select a fle system where you want to create a MInlet suite. Right click on itm a popup menu appears.

From the pop up menum select New -> MInlet Suite.

2) Enter the Name of MInlet suite. Click on Next.

3) It gives you two optons.

Allows you to create a new Midlet :

Enter the package and class name . This is the name of a MInlet that is to be created.

Allows you to add existng MInlet :

To add existng MInlet mclick on brows m select the MInlet to be

added. J2ME It also allows you to select icon for the given MInlet. 4)

Click Finish.

AnnING MInlet to a MInlet suite:

1) Select a MInlet suite m to which you want to add Midlet. Right click on itm a pop up menu

appears. Select Edit suite from the popup menu.

2) Click on Ann button to add a new MInlet.

3) Enter name of package and class name.4) Click on OK.

New MInlet is added to your MInlet suite.

An example J2ME applicaton using Radio buttons :

nescripton:

Item class is a base class for a number of derived classes that can be contained
within a form class. These derived classes are ChoiceGroup m nateFieldm ImageItemm
StringItem and TextField.

The ChoiceGroup class is used to create check boxes or radio buttons on a form. The

state of an instance of a class derived from the Item class changes whenever user enters data

into the instance msuch as radio button is selected. An ItemListener monitors the events during a

life of the MInlet and traps events that changes in the state of any Item class contained on a

form.

An instance of a ChoiceGrioup class can be of two types: Exclusive or multple. An

exclusive instance appears as a set of radio buttons and a multple instance contains set of

check boxes.

Classes used:

Form Class: It is a container for the other displayable objects that appear on the screen. Any

derived class instance of the Item class can be placed on the instance of Form class.

ChoiceGroup class :

J2ME classifes check boxes and radio buttons as the instance of ChoiceGroup class.

We set the type of choiceGroup instance to EXCLUSIM E to create radio buttons.

ItemStateListener:

Any MInlet that utlizes instances of the Item class withon a form must implement

ItemStateListener and must have an itemStateChanged() method.

Creatng a Radio buttons :

private ChoiceGroup gender;

gender = new ChioceGroup (“Enter gender”m Choice.EXCLUSIM E) ;

gender.append(“Female”mnull); gender.append(“Male”mnull);

J2ME program to insert an image in a Canvas.

nescripton:

There are two types of images that can be displayed.

1) Immutable

2) Mutable

An immutable images are loaded from a fle or other resources and cannot be

modifed once the image is displayed. Examples. Icon s associated with MInlets

are immutable.

A mutable image is drawn on the Canvas using methods available in Graphics class.

An immutable image can be drawn on the screen as well as on Canvas.

where as mutable image is drawn only on the canvas.

The Canvas Class:

Each MInlet has a one instance of the nisplay classm and the nisplay class has a one

derived class called 'displayable'. Everything a MInlet displays on the Screen is created by an

instance of a nisplayable class.

The nisplay class hierarchy is shown below:

public class nisplayable public abstract
class nisplayable public abstract class
Screen extends nisplayable public abstract
class Canvas extends nisplayable
public class Graphics

The screen class is used to create high-level components. the Canvas class is used to gain lowlevel access

to display.

Creatng an Image using Image class:

Create an instance of an Image class by calling the createImage() method of the Image class.

private Image img;

img =

Image.createImage

(path);

nisplaying an Image on a Canvas

Once the image is created m it can be drawn on the Canvvs using drawImage() method of

the Graphics class. Graphics.drawImage() drawImage() method takes four parameters.

First parameter is the reference to the image that you want to display.

second and third parameters indicate positon of the image on Canvas.

Fourth parameter specifes the porton of the image bounding box that is placed

at the specifed

co-ordinate

positon.

Example:

graphics.drawImage(imgm5m20mGraphics.HCENTER | Graphics.M CENTER) palces the

center of the image at co-ordinate positon (5m20).

Wireless Markup Language (WML)

Introducton:

The Wireless Markup Language (WML) is the HTML of WAP browsers and is transmitted via
the HTTP protocol.

WML is a markup language built specifcally for communicatng across WAP-based networksm
and is based upon XML (eXtensible Markup Language). Like HnMLm it is at frst glance similar to HTMLm
but is also a much more strictly written language.

To make it possible for web pages to be read from a WAP-enabled devicem WML must be
used. The WML coder determines within the code what parts of the web page are viewable to the
devicem and what is not. For examplem it would not be too advantageous for a 468x60 pixel banner to be
loaded into the small screen of a WAP devicem due to sizem color and bandwidth restraints. Howeverm
certain parts of the text may be made available to the device.

The advantage of the WML language is the fact thatm since it is a subset of XMLm developer's
can easily kill two birds with one stone by building both the web page and wireless device page
simultaneously. While this is stll possible with HnML codem it is certainly not as obvious and
workarounds must be introduced

Why Should we use WML

Although you might not have any plans immediately for creatng a WAP version of your sitem
it is always a good idea to get involved in new technology. All you need to do is make a small site (even
one page) which tells people a bit about your website. In the future you can develop the site further
with things like e-mail and informaton for people to get directly of their phones.

Over the past few months new WAP (Wireless Applicatons Protocol) phones have become
extremely popular and many large websites have created special 'mobile' versions of their site. Many
people predict thatm over the next few yearsm WAP sites will become extremely popular and e-
commerce over mobile phones will be widely available

The main sites which will beneft from WAP are ones providing a service like e-mailm live
sports scores or a calendar service etc. but there are many other uses. For examplem a site giving music
reviews could put their reviews on a WAP site. People could then read the reviews on their mobile
phone while browsing through the Cns in a shop.

WML necks and Cards

WML pages are called nECKS. They are constructed as a set of CARnSm related to each other
with links. When a WML page is accessed from a mobile phonem all the cards in the page are
downloaded from the WAP server. Navigaton between the cards is done by the phone computer -
inside the phone - without any extra access trips to the server.

<?xml version="1.0"?>

!nOCTYPE wml PUBLIC "-//WAPFORUM//nTn WML 1.1//EN"

"http://www.techiwarehouse.com/nTn/wml11.1.xml">

<wml>

<card id="HTML" ttle="HTML Tutorial">

< p> You can learn WML in 30 nays

</p>

</card>

< card id="XML" ttle="XML Tutorial">

< p> You can also learn how to make an WAP based

Page < /p>

</card>

</wml>

As you can see from the examplem the WML document is an XML document. The nOCTYPE is defned to

be wmlm and the nTn is accessed at www.techiwarehouse.org/nTn/wml11.1.xml.

<?xml version="1.0"?>

<!nOCTYPE wml PUBLIC "-//WAP/nTn WML 1.1//EN"

"http://www.wap.org/nTn/wml11.1.xml">

<wml>

<card id="no1" ttle="Card 1">

<p>Hello World!</p>

</card>

<card id="no2" ttle="Card 2">

<p>Welcome to our WAP Tutorial!</p>

</card>

</wml>

WML TAGS

WAP homepages are not very diferent from HTML homepages. The markup language used

for WAP is WML (Wireless Markup Language). WML uses tags - just like HTML - but the syntax is stricter

and conforms to the XML 1.0 standard. WML pages have the extension *.WMLm just like HTML pages

have the extension *.HTML

WML is mostly about text. Tags that would slow down the communicaton with
handheld devices are not a part of the WML standard. The use of tables and images is strongly
restricted.
Since WML is an XML applicatonm all tags are case sensitve (<wml> is not the same as </WML>)m and

all tags must be properly closed.

CONCLUSION

Wap's designed is fexible for client's minimal resources such as computng power and memory
storage.WAP is programmed in wireless markup language WML (applicaton of

XML) and WMLScript (WAP's version JavaScript) which is embedded in client's mobile. WML provides a
simple event mechanism that allows diferent content to be displayed. User actonsm

such as pressing a keym can be ted to scripts that cause changes in content. The WML browser also has
this tmer functon that can load a diferent page or trigger the change of variables when the tme is up.

This provide great fexibility than the statc content that HTML can deliver.

2.CALCULATOR

CODING:

import javax.microediton.midlet.*;

import javax.microediton.lcdui.*;

public class Calculator extends MInlet implements CommandListener

{

private nisplay display;

private Form form;

private TextField ambmc;

private Command addmsubmmulmexit;

private Alert alert;

public Calculator()

{

a=new TextField("n1:"m""m30mTextField.ANY);

b=new TextField("n2:"m""m30mTextField.ANY);

add=new Command("Add"mCommand.OKm1);

sub=new Command("Sub"mCommand.OKm2);

mul=new Command("Mul"mCommand.OKm3);

exit=new Command("Exit"mCommand.EXITm0);

display=nisplay.getnisplay(this);

}

public void startApp()

{

form=new Form("Calculator");

form.append(a);

form.append(b);

form.addCommand(add);

form.setCommandListener(this);

form.addCommand(sub);

form.setCommandListener(this);

form.addCommand(mul);

form.setCommandListener(this);

form.addCommand(exit);

form.setCommandListener(this);

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditonal)

{

}

public void commandActon(Command cmnisplayable s)

{

String n1=a.getString();

String n2=b.getString();

if(c==add)

{

display=nisplay.getnisplay(this);

int res=Integer.parseInt(n1)+Integer.parseInt(n2);

alert=new Alert("result"mres+""mnullmAlertType.INFO);

alert.setTimeout(Alert.FOREM ER);

display.setCurrent(alertmform);

}

if(c==sub)

{

display=nisplay.getnisplay(this);

int res=Integer.parseInt(n1)-Integer.parseInt(n2);

alert=new Alert("result"mres+""mnullmAlertType.INFO);

alert.setTimeout(Alert.FOREM ER);

display.setCurrent(alertmform);

}

if(c==mul)

{

display=nisplay.getnisplay(this);

int res=Integer.parseInt(n1)*Integer.parseInt(n2);

alert=new Alert("result"mres+""mnullmAlertType.INFO);

alert.setTimeout(Alert.FOREM ER);

display.setCurrent(alertmform);

}

if(c==exit)

{

destroyApp(false);

notfynestroyed();

} } }

OUTPUT:

3.CALENDER

COnING:

import javax.microediton.lcdui.*;

import javax.microediton.midlet.*;

public class PhoneCalender extends MInlet implements CommandListenermItemStateListener

{

private Command exitCommand;

private nisplay display;

Form displayForm;

nateField date;

public PhoneCalender()

{

display=nisplay.getnisplay(this);

exitCommand=new Command("exit"mCommand.SCREENm1);

date=new nateField("Select to nate:"mnateField.nATE);

}

public void startApp()

{

displayForm=new Form("Quick Calender");

displayForm.append(date);

displayForm.addCommand(exitCommand);

displayForm.setCommandListener(this);

displayForm.setItemStateListener(this);

display.setCurrent(displayForm);

}

public void itemStateChanged(Item item)

{

}

public void pauseApp()

{}

public void destroyApp(boolean unconditonal)

{}

public void commandActon(Command cmnisplayable s)

{

if(c==exitCommand)

{

destroyApp(false);

notfynestroyed();

}

}

}

OUTPUT:

4.TIMERTEMPLATE

CODING:

import java.utl.*;

import javax.microediton.midlet.*;

import javax.microediton.lcdui.*;

public class TimerTemplate extends MInlet implements CommandListener

{

private nisplay display;

private Form fmMain;

private Command cmExit;

private Command cmStop;

private Timer tm;

private TestTimerTask tt;

private int count=0;

public TimerTemplate()

{

display=nisplay.getnisplay(this);

fmMain=new Form("TimerTest");

fmMain.append("Waitng...........\n");

cmExit=new Command("Exit"mCommand.EXITm1);

cmStop=new Command("Stop"mCommand.STOPm2);

fmMain.addCommand(cmExit);

fmMain.addCommand(cmStop);

fmMain.setCommandListener(this);

tm=new Timer();

tt=new TestTimerTask();

tm.schedule(ttm5000);

}

public void startApp()

{

display.setCurrent(fmMain);

}

public void destroyApp(boolean unconditonal)

{

}

public void pauseApp()

{

}

public void commandActon(Command cmnisplayable d)

{

if(c==cmStop)

{

tm.cancel();

}

else if(c==cmExit)

{

destroyApp(false);

notfynestroyed();

}

}

private class TestTimerTask extends TimerTask

{

public fnal void run()

{

fmMain.append("run count:"+ ++count+);

}

}

}

OUTPUT:

5.SIMPLE GAME

CODING:

import javax.microediton.midlet.*;

import javax.microediton.lcdui.*;

import java.utl.Timer;

import java.utl.TimerTask;

public class Bouncing extends MInlet

{

Ball b1mb2;

BallCanvas bc;

nisplay display;

public Bouncing()

{

System.out.println("Bouncing ball");

}

public void destroyApp(boolean a)

{

 }

public void startApp()

{

try

{

bc=new BallCanvas();

display=nisplay.getnisplay(this);

Ball b1=new Ball(90m30m5m5m1m10m250m255m255mbc.getGraphics()mbc.getWidth()mbc.getHeight()mbc);

Ball b2=new Ball(100m20m15m1m3m20m150m150m250mbc.getGraphics()mbc.getWidth()mbc.getHeight()mbc);

Ball b3=new Ball(10m10m30m2m1m25m250m100m250mbc.getGraphics()mbc.getWidth()mbc.getHeight()mbc);

display.setCurrent(bc);

}

catch(Excepton e)

{

System.out.println(e);

}

}

public void pauseApp()

{

}

public class BallCanvas extends Canvas

{

Graphics g1;

public void paint(Graphics g)

{

g1=g;

}

Graphics getGraphics()

{

return(g1);

}

}

public class Ball

{

private int oxmoymrediusmspeed;

private int incxmincy;

private int redmgreenmblue;

private int maxxmmaxy;

private boolean xbmybmfag;

TimerTask t;

Timer tmer;

Graphics g;

BallCanvas bc;

private int prev1mprev2;

public Ball(int xmint ymint rmint ixmint iymint smint rdmint grmint bmGraphics g1mint mxmint mymBallCanvas bc1)

{

System.out.println("Ball");

maxx=mx;

maxy=my;

incx=ix;

incy=iy;

red=rd;

green=gr;

blue=b;

xb=false;

yb=false;

redius=r;

ox=x;

oy=y;

fag=false;

bc=bc1;

g1=g;

tmer=new Timer();

tmer.schedule(new Bounce()m(long)0m(long)s);

}

public void paint()

{

if((ox+redius)>=maxx)

xb=true;

if(ox<=0)

xb=false;

if((oy+redius)>=maxy)

yb=true;

if(oy<=0)

yb=false;

if(xb==false)

{

prev1=ox;

ox+=incx;

}

else

{

prev1=ox;

ox-=incx;

}

if(yb==false)

{

prev2=oy;

oy+=incy;

}

else

{

prev2=oy;

oy-=incy;

}

bc.repaint();

if(fag==false)

{

bc.getGraphics().setColor(0m0m0);

bc.getGraphics().fllRect(0m0mbc.getWidth()mbc.getHeight());

fag=true;

}

bc.getGraphics().setColor(0m0m0);

bc.getGraphics().fllArc(prev1mprev2mrediusmrediusm0m360);

bc.getGraphics().setColor(redmgreenmblue);

bc.getGraphics().fllArc(oxmoymrediusmrediusm0m360);

try

{

wait(20);

}

catch(Excepton e)

{

}

}

public class Bounce extends TimerTask

{

public void run()

{

paint();

}

}

}

}

OUTPUT:

6.ANIMATION

CODING:

import javax.microediton.lcdui.*;

import javax.microediton.midlet.*;

public class SweepImageAnimaton extends MInlet

{

public void startApp()

{

fnal SweepCanvas sweeper=new SweepCanvas();

sweeper.start();

sweeper.addCommand(new Command("Exit"mCommand.EXITm0));

sweeper.setCommandListener(new CommandListener()

{

public void commandActon(Command cmnisplayable s)

{

sweeper.stop();

notfynestroyed();

}

});

nisplay.getnisplay(this).setCurrent(sweeper);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditonal)

{

}

}

class SweepCanvas extends Canvas implements Runnable

{

private boolean mTrucking;

private int mTheta;

private int mBorder;

private int mnelay;

public SweepCanvas()

{

mTheta=0;

mBorder=10;

mnelay=50;

}

public void start()

{

mTrucking=true;

Thread t=new Thread(this);

t.start();

}

public void stop()

{

mTrucking=false;

}

public void paint(Graphics g)

{

int width=getWidth();

int height=getHeight();

//Clear the Canvas

g.setGrayScale(255);

g.fllRect(0m0mwidth-1mheight-1);

int x=mBorder;

int y=mBorder;

int w=width-mBorder*2;

int h=height-mBorder*2;

for(int i=0;i<8;i++)

{

g.setGrayScale((8-i)*32-16);

g.fllArc(xmymwmhmmTheta+i*10m10);

g.fllArc(xmymwmhm(mTheta+180)3360+i*10m10);

}

}

public void run()

{

while(mTrucking)

{

mTheta=(mTheta+1)3360;

repaint();

try

{

Thread.sleep(mnelay);

}

catch(InterruptedExcepton ie)

{

}

}

}

}

OUTPUT:

7.PERSONAL PHONE BOOK

CODING:

import javax.microediton.midlet.*;

import javax.microediton.lcdui.*;

public class PhoneBook extends MInlet implements CommandListener

{

private Command exitmnextmNew;

private TextBox namemnumber;

private nisplay display;

public PhoneBook()

{

next=new Command("Next"mCommand.SCREENm2);

exit=new Command("Exit"mCommand.SCREENm2);

New=new Command("New"mCommand.SCREENm2);

name=new TextBox("Enter Name"m""m30mTextField.ANY);

number=new TextBox("Enter Number"m""m13mTextField.PHONENUMBER);

}

public void startApp()

{

display=nisplay.getnisplay(this);

name.addCommand(next);

name.setCommandListener(this);

number.addCommand(New);

number.setCommandListener(this);

number.addCommand(exit);

number.setCommandListener(this);

display.setCurrent(name);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditonal)

{

notfynestroyed();

}

public void commandActon(Command cmnisplayable s)

{

String label=c.getLabel();

if(label.equals("Exit"))

{

System.out.println("Name="+name.getString()+"Number="+number.getString());

destroyApp(false);

}

else if(label.equals("Next"))

{

number.setString("");

display.setCurrent(number);

}

else if(label.equals("New"))

{

display.setCurrent(name);

System.out.println("Name="+name.getString()+"Number="+number.getString());

name.setString("");

}

}

}

OUTPUT:

8.AUTHENTICATION AND ENCRYPTION TECHNIQUE

CODING:

import javax.microediton.midlet.MInlet;

import javax.microediton.lcdui.*;

public class LoginMidlet extends MInlet implements CommandListener

{

private nisplay display;

private TextField userName;

private TextField password;

private Form form;

private Command cancel;

private Command login;

public LoginMidlet()

{

userName=new TextField("LoginIn:"m""m10mTextField.ANY);

password=new TextField("password:"m""m10mTextField.PASSWORn);

form=new Form("sign in");

cancel=new Command("Cancel"mCommand.CANCELm2);

login=new Command("Login"mCommand.OKm2);

}

public void startApp()

{

display=nisplay.getnisplay(this);

form.append(userName);

form.append(password);

form.addCommand(cancel);

form.setCommandListener(this);

form.addCommand(login);

form.setCommandListener(this);

display.setCurrent(form);

}

public void pauseApp()

{ }

public void destroyApp(boolean unconditonal)

{

notfynestroyed();

}

public void validateUser(String namemString password)

{

if(name.equals("qm")&&password.equals("j2"))

{

menu();

}

else

{

tryAgain();

} }

public void menu()

{

List services=new List("Choose one"mChoice.EXCLUSIM E);

services.append("Check Mail"mnull);

services.append("Compose"mnull);

services.append("Addresses"mnull);

services.append("Optons"mnull);

services.append("Sign out"mnull);

display.setCurrent(services);

}

public void tryAgain() {

Alert error=new Alert("Login Incorrect"m"Please try again"mnullmAlertType.ERROR);

error.setTimeout(Alert.FOREM ER);

userName.setString("");

password.setString("");

display.setCurrent(errormform);

}

public void commandActon(Command cmnisplayable d)

{

String label=c.getLabel();

if(label.equals("Cancel")) {

destroyApp(true);

}

else if(label.equals("Login"))

{

validateUser(userName.getString()mpassword.getString());

}

} }

OUTPUT:

9.SIMULATION

10.Study of GlomoSim Simulator

Aim:

To study the concept of Glomo sim Simulator.

1. Introducton to GloMoSim.

1. Introducton

With GloMoSim we are building a scalable simulaton environment for wireless network systems. It is

being designed using the parallel discrete-event simulaton capability provided by Parsec.

Most network systems are currently built using a layered approach that is similar to the OSI seven layer

network architecture. The plan is to build GloMoSim using a similar layered approach. Standard APIs

will be used between the diferent simulaton layers. This will allow the rapid integraton of models

developed at diferent layers by diferent people. The goal is to build a library of parallelized models

that can be used for the evaluaton of a variety of wireless network protocols. The proposed protocol

stack will include models for the channelm radiom MACm networkm transportm and higher layers.

1.1 Network Gridding

The simple approach to designing a network simulaton would be to initalize each network node in the
simulaton as a Parsec entty. We can view diferent entty initalizatons as being separate logical
processes in the system. Hence each entty initalizaton requires its own stack space in the runtme. In
GloMoSimm we are trying to build a simulaton that will scale to thousands of nodes. If we have to
instantate an entty for each node in the runtmem the memory requirements would increase
dramatcally. The performance of the system would also degrade rapidly. Since there are so many
enttes in the simulatonm the runtme would need to constantly context switch among the diferent
enttes in the system. This will cause signifcant degradaton in the performance of the simulaton.
Hence initalizing each node as a separate entty will inherently limit the scalability and performance of
the simulaton.

To circumvent these problems network gridding was introduced into the simulaton. With network

griddingm a single entty can simulate several network nodes in the system. A separate data structure

representng the complete state of each node is maintained within the entty. Similarly we need to

maintain the right level of abstracton. When the simulaton code of a partcular node is being

executed it should not have access to the data structures of the other nodes in the simulaton. The

network gridding technique means that we can increase the number of nodes in the system while

maintaining the same number of enttes in the simulaton. In factm the only requirement is that we

need only as many enttes as the number of processors on which the simulaton is being run. Hence if

we are running a sequental simulaton we need to initalize only one entty in the system. We also

don't meet the memory or context switching problems that limit the simulaton.

In GloMoSimm each entty represents a geographical area of the simulaton. Hence the network nodes

which a partcular entty represents are determined by the physical positon of the nodes.

Suppose we specify the following in the input fle:

#

SIMULATION-RANGE-X 100

SIMULATION-RANGE-Y 100

#

Number of parttons in x and y range.

PARTITION-NUM-X 2

PARTITION-NUM-Y 2

#

We would now have a simulaton are of size (100 * 100). We would also have 4 parttons (each

partton is represented by a single entty) in the simulaton. So one partton would encompass the

square area represented by the coordinates (0m 0)m (49m 0)m (0m 49)m and (49m 49).

1.2 Layered Structure

Since we are building GloMoSim using a layered approachm we would like to have the ability to rapidly

integrate models developed at diferent layers by diferent people. Hence the simple approach here

would seem to be that each layer in the simulaton would be represented by a diferent Parsec entty.

We would stll have the same problem that we had previously. As the number of layers in the

simulaton increasesm the number of enttes in the simulaton would also increase. This would lead to

scalability and performance problems in the simulaton. But this is not as dramatc since there are only

a few layers in the simulaton. But there are other reasons why we need to aggregate the layers into a

single entty.

Ofen tmesm diferent layers of the simulaton need to access certain common variables. For examplem

the upper layers of the simulaton need to use the CPU when they are executng any instructons. But

CPU is a shared resource among these layers. Hencem before executng any instructons a layer has to

make sure that the CPU is free. Hence the upper layers need to have access to common variables

which will provide informaton about the state of the CPU. If these layers are kept as diferent enttes

in the simulaton we don't have a way of accessing shared variables. Besides we don't want to use any

global variables as they can create problems for parallel executon.

If the layers are kept as diferent enttesm each layer also has to explicitly keep track of the "ename"
value for the upper and lower layers. These "ename" values are needed for message passing among the
various layers. For parallel conservatve runtmem each entty also has to specify the source and
destnaton set as well as the lookahead values for the entty. Specifying lookahead for an entty can
become very complicated. All this creates additonal work for the developer who is basically interested
in modeling a partcular network protocol.

For these reasonsm we decided to integrate the various GloMoSim layers into a single entty. Each entty
now encompasses all the layers of a simulaton. Instead each layer is now implemented as functons in

the new design. We provide an initalizaton functon that will be called for each layer of each node at
the beginning of the simulaton. We provide functons that can be used to send messages between the
layers. When a layer receives a partcular messagem it will automatcally invoke a functon that is
provided by the developer of that partcular layer. And based on the contents of the messagem the
functon can then execute the appropriate instructons. At the end of the simulatonm a functon is also
called for each layer of each node. A layer can use this functon to collect any relevant statstcs. An
actual implementaton of a partcular layer will be shown shortly.

2. nirectory Structure of GloMoSim.

Afer downloading and upzipping GloMoSimm it should contain the following directories:

/applicaiton contains code for the applicaton layer

/bin for executable and input/output fles

/doc contains the documentaton

/include contains common include fles

/mac contains the code for the mac layer

/main contains the basic framework design

/network contains the code for the

network layer /radio contains the code for

the physical layer /transport contains the

code for the transport layer

You have to compile the fles from the main/ directory.

o Run "make depend" to create list of depndencies in the Makefle.

o Make sure that the right path for the Parsec compiler is specifed in the Makefle

for the "PAR" variable. o Run "make" to create the executable

You can also use Makent.bat for compiling in batch mode (for NT).

To run the simulaton you have to go to the bin/ directory. The executable is called "Sim". It taked only

one command line paramterm which is an input fle. An example input fle is CONFIG.IN in bin/ directory.

Run "Sim CONFIG.IN" to run the program. A fle called "GLOMO.STAT" is produced at the end of the

simulaton and contains all the statstcs generated by the simulaton. Make modifcatons to CONFIG.IN

to vary the parameters for running the simulaton.

3. nescripton of input fle.

This secton explains the various parameters which are part of the input fle supplied to the GloMoSim

executable. In the input fle anything following a "#" is treated as a comment. Note that some

parameters presented in this secton may not be valid in the latest GloMoSim library as we keep

updatng the library to be confgured easily. The "confg.in" fle included in the distributon should be

the most up-to-date confguraton fle and used as a template fle.

The following two parameters stand for the physical terrain in which the nodes are being simulated. For

examplem the following represents an area of size 100 meters by 100 meters. All range parameters are in

terms of meters.

#

Terrain Area we are simulatng.

TERRAIN-RANGE-X 100

TERRAIN-RANGE-Y 100

#

The following parameter represents the power range of wireless nodes in the simulaton. For examplem a

node can reach any other node within 50 meters of its positon.

#

POWER-RANGE 50

#

The following is a random number seed used to initalize part of the seed of various randomly generated

numbers in the simulaton. This can be used to vary the seed of the simulaton to see the consistency of

the results of the simulaton.

#

SEEn 1

#

The following parameter represents the maximum simulaton tme. The numbered porton can be

followed by optonal letters to modify the simulaton tme.

For example:

100NS - 100 nano-seconds

100MS - 100 milli-seconds

100S - 100 seconds

100 - 100 seconds (default case)

100M - 100 minutes

100H - 100 hours

100n - 100 days

#

SIMULATION-TIME 100M

#

The following parameter represents the number of nodes being simulated.

#

NUMBER-OF-NOnES 12

#

Conclusion:

Here the glomo simulator has been evaluated with the range of small tme manipulaton.

So every part of delivery standards can be modifed easilym.

